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The problem of subgrid modelling, that is, of representing energy transfers from large 
to small eddies in terms of the large eddies only, must arise in any large eddy simula- 
tion, whether the equations of motion are open or direct (unaveraged) or closed 
(averaged). Models for closed calculations are derived from classical closures, and 
these are used to determine the effect of filter shape, grid-scale spectrum and grid- 
scale anisotropy on the effective eddy viscosity: the Leonard or resolvable-scale 
stress is calculated separately and is found to account for 14% of the total drain in 
a typical high Reynolds number case. 

The validity of using these eddy viscosities in an open calculation is considered. 
It is concluded that this is not unreasonable, but that the simulation would be much 
improved if the gross drain could be separated into net drain and backscatter. 

1. Introduction 
Computer simulation is now well established as a valuable adjunct to experiment 

for the study of turbulent flows. It can provide the sort of detail which is not easily 
obtained from experiment, and in particular it can furnish information on the pressure 
fluctuations. At low Reynolds numbers (Re, < 50) i t  is possible to simulate the whole 
of a homogeneous turbulent field (Orszag & Patterson 1972) but this is not now 
possible for any real flow field or for homogeneous turbulence a t  high Re,: the range 
of eddy sizes outruns the speed and storage capacity of both existing and projected 
computers. 

The remedy is well known. The simulation is confined to the large eddies or grid 
scales, and the interaction between these and the unrepresented small eddies or sub- 
grid scales must be represented in terms of the large eddies only. This technique is 
known as subgrid modelling (Smagorinsky 1963; Lilly 1966, 1967; Deardorff 1970) 
and a particularly clear formulation, which will be followed in this paper, is given by 
Leonard (1974). 

The drain of energy from the grid scales to the subgrid scales is represented by an 
eddy-viscosity term of the form 

where iii represents the grid-scale component of the velocity (see $ 2 )  while the net 
eddy viscosity v, is derived from the local rate-of-strain tensor. Details are given 
below. 

- v, VZEi, 11.1) 
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A computer calculation of this type, in which the fluctuations of the turbulence 
are followed in detail, will be called a direct simulation (DS). This term includes both 
complete simulations and those in which subgrid modelling is used. 

The alternative to direct simulation is the closed calculation, in which some form 
of closure is used to average out the fluctuations. The only type of closure which gives 
sufficient information for our purpose is the two-point variety, which seeks to express 
the limited triple correlations which appear in the second moment equation, namely 

(Ui(X, t )  Uj(X, t )  u&’, W ,  

(u&, t )  u@’, t ’)). 

as functionals of the general pair correlation 

Accounts of these closures are given by Monin & Yaglom (1975, vol. 2) and by Leslie 
(1973). 

Kraichnan (1976) has shown, and this paper confirms, that  the formulation of sub- 
grid modelling is particularly straightforward in a closed calculation. The object of 
this paper is to examine the validity of inferring subgrid models for large eddy simu- 
lations (i.e. direct simulations of the large eddies only) from the classical closures, and 
to extend Kraichnan’s work to the conditions under which these simulations are 
actually performed. 

2. Generation of the grid-scale equations 

Ui(x, t )  and a subgrid component ui(x, t )  by a filtering operation 
Leonard (1974) separates the velocity field ui(x, t )  into a grid-scale component 

U i ( x ,  t )  = 1 G(x, x’) ui(x’, t )  dx’ , (2.1) 

(2.2) 
- u! = u.-ui. a a  

The filter G is constant in time and is normally a scalar. The overbar always denotes 
the filtering operation, a statistical average being indicated by angular brackets. 

If the physical properties of the fluid are constant, the result of filtering the Navier- 
Stokes equation is 

where 

The first term in RIzij, namely E i E j ,  is apparently a grid-scale component, but it can- 
not be represented exactly as a simple functional of Ei. Leonard therefore rewrites 
(2.3) as 

Rij = ZiUj + Ui U; + u;Ui + U; u;. (2.4) 
- 

aUi 1 ap  a 
at p axi axj 

{EiEi + Lij + qj} + vv2ui. - = -- _-_ 

Ei3, is the true grid-scale inertial term while 

is now known as the Leonard stress. Finally 
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is the true subgrid stress. It measures the effect of the unrepresented subgrid scales 
on the evolution of the grid scales. Leonard approximates Lij by 

Lii = c2V2(.ziizi), (2.8) 
where 

is the (spherical) second moment of the filter. 
Any finite-difference scheme will filter the raw velocity components ui, but Kwak, 

Reynolds & Ferziger (1975) find that the simulation is improved if the Navier- 
Stokes equations are prefiltered before the finite-difference scheme is applied. For 
best results the filter should have about twice the width of the finite-difference mesh: 
a Gaussian shape is suitable and convenient. Love (1978, private communication) 
has shown that these findings are also valid for the Burgers equation. 

2.1. The subgrid model 

All subsequent workers have followed Smagorinsky (1963) and have represented 
the true subgrid drain qj by an eddy-viscosity model? 

(2.10) 

so that the complete grid-scale equation reads 

If v, is independent of x, the last term reduces to (v + v,) V2ui. 
The net eddy viscosity v, will depend on the filter width h and on E ,  the total rate 

of dissipation of energy in the subgrid scales. If 11, is determined by these two variables 
only, then dimensional analysis gives 

V ,  = FOht. (2.12) 

It will be shown later that the non-dimensional constant F depends on the nature 
of the filter and on the spectrum of the large (grid-scale) eddies. 

It is not easy to estimate E in a large eddy simulation and Smagorinsky therefore 
replaced (2.12) by 

V, = C2h2@, (2.13) 

where (2.14) 

is related to the grid-scale deformation tensor, while c is another non-dimensional 
constant. (In $ 4  we show that (2.12) and (2.13) are compatible, and deduce the rela- 
tion between c and F . )  Some workers (see, for example, Kwak et al. 1975) have pre- 
ferred to use the grid-scale vorticity rather than 8. The two quantities are equiva- 
lent in the homogeneous isotropic Aows with which this paper is mainly concerned. 

In  his highly successful simulation of channel flows Schumann (1973, 1975) related 
v, to the subgrid energy rather than to 8. In  essence his model is 

v, = cgh(F) i  

t Until Leonard (1974) pointed out the special character of the Leonard stress, this repre- 
sentation was applied to the total stress Lij + Ti,. We refer to this point later. 

3-2 
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though its practical implementation in a finite-difference scheme is more complex 
than this. 8‘ is determined by solving a balance equation derived from the subgrid 
component of the Navier-Stokes equations: the source in this equation is the drain 
from the grid scales. This approach is radically different from Smagorinsky’s and we 
do not attempt to analyse it in this paper. 

2.2. TheJilters 

For reasons explained in 9 3.1, the flow will be supposed to be homogeneous. The filter 
G(x, XI) then simplifies to a difference function G(x - XI), and (2.1) has the Fourier 

(2.15) 
transform 

Ui(k, t )  = G(k) ui(k, t ) .  

Three filters have been considered. The simplest is the spherically symmetric 

- 

sharp filter (the ‘subgrid-scale filter’ of Kwak et al. 1975) 

(2.16) 

(The underlining indicates the short title which identifies the filter.) The Gaussian 
filter 

G ( k )  = exp ( - & k2h2) (2.17) 
- 

is also symmetric, while the top-hat filter 

h-3 if [xi-.:\ < ah ( i  = 1,2,3), 
0 otherwise 

G(x-x’) = (2.18) 

is weakly anisotropic. This filter is of some practical interest, since it is generated by 
a second-order central-difference scheme in which the finite-difference mesh is moved 
over the velocity field, rather than being fixed in space: so long as the field is homo- 
geneous, this movement does not affect the results. 

The Fourier transform of (2.18) is 

G ( 4  = B(*k,h)B(&k,h) B(&k,hL (2.19) 

where B(v)  = sinv/v, 

and the calculations reported below are made on the isotropic component of this 
filter 

(2.20) 

We have shown, by spherical harmonic expansion, that the resulting error is propor- 
tional to the square of the relative anisotropy, and that i t  is negligible for this G1ter.t 
These two filters prove to be rather similar, and we emphasize the Gaussian because 
a ‘real-life’ large eddy simulation will be dominated by the Gaussian prefilter, whose 
(wavenumber) width will be about half that of the filter of top-hat type implied by 
the finite-difference scheme. 

t This work has been omitted to save space. Details are available from the authors on 
request. 
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Two filters are equivalent for this purpose if they have the same value of G, [see 
(2.9)] and the Gaussian (2.17) is equivalent to the top-hat filter (2.18) in this sense, 
both having G, = Ah2. However the integral G, does not exist for the sharp filter 
(2.16) and we therefore prefer to define equivalence as implying the equality of the 
width 

W = 1: G,,(k) dk.  (2.21) 

On this basis the sharp filter is equivalent to the top-hat filter if 

K, = 2.957h-1 
and we redefine the Gaussian as 

G ( k )  = exp -- ( L Y 7 )  

(2.22) 

(2.23) 

so that it has the same width. The comparisons reported below are all on this basis. 

3. Subgrid modelling in a closed calculation 
At a Reynolds number of 106, the largest eddies in a turbulent flow are roughly 

1000 times bigger than the dissipation eddies. A full (three-dimensional) direct simu- 
lation would require upwards of lo9 mesh points and a very small time step. This 
fact led Corrsin (1961) to conclude not only that the calculation was impractical a t  
that time but that  it would probably always be infeasible. 

A similar argument applies to a closed calculation on a real flow. The calculation 
now has a minimum of four space dimensions (Leslie 1973, chap. 15).  I n  each dimen- 
sion fewer mesh points are required than in a direct simulation because the correlation 
functions are smooth while the raw (fluctuating) velocities are not, but this saving 
could well be more than cancelled by the increase in dimensionality. Therefore there 
is also a subgrid modelling problem in closed calculations. 

I n  this section we consider how this latter problem may be tackled: in $ 5  we ex- 
amine the implications of this work for subgrid modelling in a large eddy simulation. 
The analysis limited to homogeneous flows: for convenience, we shall also assume 
stationarity. Closures such as direct interaction can be applied to  inhomogeneous 
flows (Kraichnan 1964) but a t  present the application is purely formal. If the flow is 
homogeneous, the various tensors are diagonal in a wavenumber representation. No 
diagonalizing representation is known for any inhomogeneous flow, and without this 
simplification it has proved impossible to extract practical results from the equations. 
I n  $ 5 it will be argued that this limitation is not as serious as i t  seems. 

3.1. Subgrid modelling i n  a homogeneous isotropic flow 
Transforming to wavenumber space and eliminating the pressure, the equation of 
motion reads 

(3.1) 
4 

where 
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ss A 
L; implies S( k - p - r) d3p d3r 

(Leslie 1973). In  (3.1), Pi(k) represents the driving force which sustains the turbulence. 
In  a large eddy simulation this force will be represented explicitly: it seems that it 
will play no part in transferring energy from the large eddies to the small ones. 

Unless the whole of the flow is homogeneous the grid-scale pressure cannot be 
eliminated algebraically, as it has been from (3.1). It is standard practice in large eddy 
simulations to compute the pressure explicitly. 

The equation of motion for the grid-scale velocity Zi(k, t )  is formed from (3.1) by 
filtering according to (2.14): it  is 

The inertial term on the right-hand side of (3.2) can be brought into correspondence 
with the analysis of Leonard (1974) by splitting it up thus: 

M,jm(k) i [G(P) G(r) -{I - G(kkG(P) G(r) +- Q?J * 
+ G ( ~ ) [ G ( P )  { ~ - G ( ~ ) } + G ( ~ ) { ~ - G ( P ) } + { ~ - G ( P ) } { ~ - G ( ~ ) } I ) u , ( P ,  t)urn(r,t). 
4 * 8 (3.3) 

Term @ is UjUrn; being represented explicitly in the large eddy simulation, it does 

Term @ is the resolvable-scale or Leonard stress Lij [see (2.6)]. 
Term @is the true subgrid stress Ti j  [see (2.7)] and can be collapsed to 

not contribute to the subgrid stresses. 

A 

L; G(k) (1 - G(P) G(r)l Mijm(k) UAP) u ? ? m  (3.4) 

The object of subgrid modelling is to represent this term as a functional of Z.t 

second-moment equations formed from them. In particular the grid-scale energy 
The classical closures work, not with primitive equations such as (3.3), but with 

B(k, t )  = 4kz$  &(k, t )  ai( - k, t ) )  d!& (3.5) 

is related to the total scalar energy E(k,  t )  by 

B(k, t )  = G2(k) E(k,  t ) .  

The inertial contribution to the equation of motion for 3 is formed from (3.3) 
according to 

(The factor 4 in (3.5) cancels since we are working on the time diagonal.) The final 
equation is 

$ k2dQk(G(k) ui( - k, t )  {form (3.3)}). (3.7) 

(d/dt + vk2) R ( k ,  t )  = grid-scale inertial transfer 

+Leonard term + true subgrid term + forcing term, (3.8) 

t There is no need for such modelling in a closed calculation on a homogeneous isotropic 
flow, since the functions are then one-dimensional and can be represented in full. However, the 
work does show rather simply how such modelling can be effected. 
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where 

Leonard term = - 9 dpdrG(k)  ( 1  - G(k)}G(p)  G(r)  S(k1pr) (3.9) 

A 
and true subgrid term = 9 I[ dpdrG2(k){1 - G ( p )  G(r)}S(k lpr) .  (3.10) 

J J  

Here S(k1pr) = 16n2kprMij,(k) (u , (p)  u,(r) ui( - k)). (3.11) 

(Strictly, S(k1pr) is the isotropic part of the quantity on the right side: the aniso- 
tropic parts vanish when the angular integration described in the appendix is per- 
formed.) The double integral is over the region 

lk-pl < r < k + p ,  (3.12) 

in which p and r can form a triangle with k (Leslie 1973). 
The aim of this section is to derive subgrid models by using the functional relation- 

ship which the classical closures give between S ( k l p ,  r )  and second moments such as E. 
Provided that the response and correlation functions are assumed to have the same 
exponential dependence on time 

(3.13) 

(see Leslie 1973 for a discussion of this assumption and of the formulae given below) 
then all the classical closures now available give the same functional form for the 
inertial transfer function S ( k l p ,  r )  on the main time diagonal t’ = t .  This is 

m I P 5  r )  = [ 7 ( k )  + 7 ( P )  + 7(r)1-1 [W, P ,  M r )  { d P )  - d k ) }  

+ B(k9 r ,  P )  d P )  { d r )  - 4(k) ) l ,  (3.14) 

where q ( k )  = E ( k ) / 4 n k 2 ,  

B ( k l  P ,  r )  = 1 6 n 2 k 3 p W , p ,  r ) ,  b(k7 P ,  = ( p / k )  (V + z3)’ 

x, y and z being the cosines of the angles opposite k ,  p and r in the triangle formed 
by these vectors, while 7 is defined by (3.11). In  this equation, the response function 
is called to distinguish it from the filter function G(k) .  

Combining (3.11) and (3.14), the true subgrid drain can be put into the form 

true subgrid drain = 2k2v,(k) E ( k )  - U ( k ) ,  (3.15) 

where (3.16) 

(3.17) 

In Leonard’s formalism, the standard eddy-viscosity assumption implies that 

true net subgrid drain = 2k2v,E(k) (3.18) 

and (3.15) shows that the classical closures do not wholly support this form. Rather, 
these closures indicate that the gross drain is proportional to the focal excitation, 
and that this gross drain is partly offset by a return of energy from the subgrid scales. 
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This is just as one would expect and the fact that the classical closures produce this 
result quite naturally is one of the strongest reasons for thinking that they may be 
broadly correct. 

Equation (2 .12)  implies that v, depends only on the gross properties of the local 
turbulence and that it is independent of the details of the spectrum. Equations (3 .16)  
and (3 .17)  show that this is roughly true of vd(k )  and U ( k ) .  E ( p )  and E(r)  may be 
assumed to have the universal inertial-range form, and the effect of the functional 
dependence of T ( k )  on 8 ( k )  will be small since T ( k )  will be smaller than ~ ( p )  and ~ ( r ) .  
However if (3 .15)  is forced into the form (3 .18 ) ,  then 

v,(k) = ~ d ( k )  - U ( k ) / 2 k 2 8 ( k )  (3 .19)  

and this must be sensitive to the form of 8. In  large eddy simulations v ,  is assumed 
to be independent of k ,  and the accuracy of this assumption is tested below by cal- 
culation. 

I n  this closed calculation the Leonard drain term is 

- 2  Tii- ( U i U j - - U i U j )  ( - - - )  
[see (2.5) and (2.6)] and (3 .9 )  is the Fourier transform of this quantity. We could treat 
it as we treated the true drain term, but this would not be faithful to actual large 
eddy simulations, where the term is modelled according to Leonard's approximation 
(2 .8) .  The equivalent of this approximation in a closed calculation is 

- 2 ~ , ( ? i , a 3 i i ~ u ~ / a X ~  ax,ax,> (3.20) 

and the Fourier transform of this quantity is 

-+  / / A d p d r G , k z G ( k )  G ( p )  G(r)h' (k]pr) .  (3.21) 

Evidently, Leonard is approximating the factor 1 - G ( k )  in (3 .9 )  by G,k2. Below, we 
compare results derived from the approximate form (3 .21)  with those given by the 
exact form (3 .9 ) .  

3.1.1. The  sharp Jilter with inertial-range spectra. The formulae simplify somewhat 
if the filter is sharp, and in particular the Leonard stress is identically zero. k will be 
in the grid-scale range k < K ,  [see (2 .16) ]  and both vd(k )  and U ( k )  will be zero unless 
p and/or r are in the subgrid range p ,  r > Kl. The formulae for vd and U simplify to 

and 

(3.22) 

(3.23) 

The region of integration, which is now further restricted by the requirement that p 
or r should be greater than K,, is shown in figure 1. 

Equations (3 .22)  and (3 .23)  simplify further when E ( k )  and v ( k )  have the inertial- 
range forms 

E ( k )  = K d k - 9 ,  q ( k )  = Ddkf .  (3.24) 
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h h-1 P 

FIGURE 1.  Region of integration for the sharp filter. 

Here e is the total rate of dissipation of turbulent energy, and KCI is the Kolmogorov 
constant. The value 

KO = 1.5, (3.25) 

which is reasonably representative of experimental data, will be used throughout this 
paper. Kraichnan (1971) has shown that use of the form (3.14) for # ( k i p ,  r )  implies 

D/KG = 0.1904 (3.26) 

and it is therefore consistent to put 

D = 0.1904 x (1.5)2 = 0.4284. (3.27) 

This value is also used throughout. The inertial-range forms are reasonable for the 
subgrid range, but they are unrealistic for the grid-scale range since they imply that 
all the production processes are concentrated a t  k = 0 and that nothing other than 
inertial transfer happens a t  finite values of k. The results would be relevant if the grid 
scales extended far into the inertial range, and they are therefore interesting as the 
limit of a practical situation. 

Kraichnan (1976) has evaluated the inertial-range forms of the integrals (3.22) and 
(3.23). He finds that for k < K,  the drain part of the eddy viscosity is constant and 
that its value is 

(3.28) 

= 0*292efKY%- (3.29) 

using our preferred values of KO and D. At these low wavenumbers the drain term 
k2vd(k) E ( k )  varies as kf, while the input or backscatter term varies as k4 and is negli- 
gible. vd(k) rises steadily with increasing k, and it has an integrable divergence of 
the form (K,-k)-* a t  the cut. Kraichnan remarks, and we shall confirm, that this 

1 KO 
12 D V d ( 0 )  = - - d K y +  
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1’ * 

x 
PIQVRE 2. v:, v: and v*, for the sharp filter. 

divergence disappears if the inertial-range spectrum does not continue right down 
to k = 0. 

The backscatter term rises rapidly as k approaches K,,  and at the cut it has a 
singularity which exactly cancels the singularity in the drain term. The net eddy 
viscosity defined by (3.19) is everywhere finite, and 

vn(K,)  = 5 * 2 4 ~ , ( 0 ) .  (3.30) 

The dependence of vd, v, = U/2kZ,!?(k) and the net drain viscosity vn on k is shown in 
figure 2 .  vb may be thought of as the ‘backscatter eddy viscosity’: for consistency in 
presentation, we plot this quantity rather than the backscatter energy U ( k ) .  

We have already noted that existing large eddy simulations replace this complex k 
dependence by a (constant) average net eddy viscosity P,’. This must drain energy 
out of the grid scales at  a rate 8, and vgv may therefore be found from energy balance 
without detailed calculation. The goverring equation is 

or (3.31) 
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h 

FIGURE 3. vz, v,* and v,* for the Gaussian filter. 

since D / K o 2  is fixed [see (3 .26 ) ] .  Kraichnan found that the factor multiplying 
K o d K ; S / D  rose from 0.0833 at  k = 0 to 0-437 at  k = K,,  and this is compatible 
with (3 .31) .  The connexion between this result and the calculation of Lilly (1966) is 
considered in 3 4. 

3.1.2. Inertial-range spectra with graded $filters. (This term indicates a filter which 
falls smoothly from 1 to 0.) Figure 3 shows i'd(k), vb(k) and i,(k) for the Gaussian filter 

exp ( -  k2h2/22.26) (3 .32)  

which has the same width W = 2.975h-1 as a top-hat filter on a mesh of spacing h 
(see 3 2 ) .  The figure is actually a non-dimensional plot of 

~ " ( h )  = v(h)/{KoD-'e*h*} (3.33) 

as a function of h = kh. The Leonard stress is now non-zero, and it has been included 
in the gross drain term vd(k ) :  its magnitude and behaviour are discussed below. 

The contrast with the behaviour of the sharp filter, as shown in figure 2, is very 
marked. The drain viscosity v$ is nearly constant over the grid-scale range of wave- 
numbers k < l / h ,  though it drops slightly as k approaches l / h .  (This wavenumber 
sets the scale of the Gaussian filter, but i t  is not critical in the way that the cut wave- 
number K ,  is for the sharp-filter.) The backscatter viscosity v t  is small for h Q 1 ,  
but it rises rapidly as h approaches 1 .  The net viscosity v$ falls steadily over the grid- 
scale range, its value at  h = 1 being about two-thirds of its value at h = 0. 

The Leonard drain term has also been calculated for the Gaussian filter (3.32)) 
assuming the grid-scale spectrum to be of inertial form throughout. The exact and 
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0.04 

0.03 

V* 

0.02 

0.0 1 

0 

x 
FIGURE 5 .  Exact and approximate Leonard viscosities compared with the total 

true subgrid viscosity. -, v:; ---, vza; . . . a * ,  v;,. 
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approximate Leonard drain terms have been computed from (3.9) and (3.21): these 
terms are used to define exact and approximate Leonard viscosities according to 

right-hand side of (3.9) = - 2vLe(k) k2E(k),  

right-hand side of (3.21) = - 2vLa(k) k2Z(k) ,  

(3.34) 

(3.35) 

and these are then non-dimensionalized according to (3.33).  Figure 4 shows and 
v& as functions of h while figure 5 superimposes this information on a plot of the 
true net drain vt. (By definition vz = I $  + v’&.) 

As one would expect, Leonard’s approximation (2.8) [or (3.21)] overestimates the 
Leonard stress: in this case the approximate formulation gives 19.2% too much 
drain of energy from the grid scales. This is not as serious as it sounds since, as figure 
5 shows, the Leonard viscosity is only a small fraction of the total drain viscosity. 
Since the viscosity is weighted with k2E(lc) a k* for this inertial-range spectrum, the 
Leonard contribution is rather greater than this graph would suggest: in this case it 
is responsible for 14.2% of the total drain. Thus Leonard’s approximation over- 
estimates the total gross drain by about 3 %, which is very acceptable. 

3.1.3. The effect of aproduction-type spectrum. In  a ‘real-life’ large eddy simulation, 
the grid-scale spectrum will not have the inertial-range form E ( k )  = Kod‘k-3. The 
actual spectral intensity must be less than this, and it is generally believed that 
E(0)  = 0. We shall call such a form a production-type spectrum, since it is closely 
related to the processes by which the turbulence extracts energy from the mean field. 
The large eddy simulation will determine the form of this function? and the com- 
putational mesh will be arranged as so to resolve it as well as possible. 

The mesh will resolve the production eddies only. With existing and projected 
computers, there is no possibility of representing inertial-range eddies explicitly, and 
indeed it is more likely that important production events will be lost in the subgrid 
scales. Therefore in large eddy simulations the grid-scale spectrum cannot be wholly 
or even largely of inertial-range form. There is therefore a need to investigate the 
effect of production-type spectra on the subgrid drain. 

The forms of these spectra are not known, and they must be postulated. Provided 
the production phenomena can be described by a single length scale, the spectrum 
must be of the form 

E(k)  = A,(k/K,) Kos8k-S. (3.36) 

Here K p  is proportional to the wavenumber a t  which the spectrum is a maximum 
[and also to the width as defined by (2.21)], and As is a function which must tend to 
1 as k / K ,  + co. There are no other strong constraints on its form. We have found it 
convenient to suppose that 

(3.37) 

which gives E(k)  a ks for small k. 
A paper by Lesieur & Schertzer (1977) has important implications for the form of 

E ( k )  when k is small. Using the eddy-damped quasi-normal Markovian (EDQNM) 

t The production processes are essentially inhomogeneous, and it is not clear how far they 
can be represented as functions of a single vector variable in wavenumber space. This doubt 
can be resolved only by extending the classical closures to inhomogeneous flows: until this is 
done, there is no reasonable alternative to representing production processes in terms of q(k ) .  

A,(z) = ZS++/( I + Z S + j ) ,  
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FIGURE 6. v: for the sharp filter and the A ,  production spectrum 
with various values of KJK,. 

closure of Orszag (1970) they have shown that there are self-similar inviscid solutions 
of the form 

in which the longest waves are invariant over long periods of time and are of the form 
kS, s = - n/m.  s cannot be greater than 4: if it is, backscatter will immediately create 
a k4 spectrum. The energy 

q l c ,  t )  = t q k t m )  

E ,  = /om E(k)dk  

decays as t-2(S+1)16+3). 

For s = 1 ( E ,  cc t-1) only, a self-similar solution can persist in the presence of molecular 
viscosity. We have therefore made most of our calculations for s = 1 ;  provided s is 
less than 4, the results are rather insensitive to  its precise value.? (As indicated above, 
s cannot be greater than 4.) 

t There is an important incompatibility between standard subgrid modelling and the work 
of Lesieur & Schertzer. In the former the drain term is proportional to k?dE, and B itself decays 
with time: E, is then found to decay as t-t rather than as t-' when a = 1. If the EDQNM 
closure is right, standard subgrid modelling needs substantial modification for small k .  This 
correction will be more important for decaying quasi-homogeneous flows, which are eventually 
long-wave dominated, than for stationary inhomogeneous flows. 
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I n  evaluating (3.16) and (3.17) we have modified the energy E ( k )  according to 
(3.36) and (3.37), but the inertial-range form (3.24) has been retained for ~ ( k ) .  The 
response function could have been computed according to the EDQNM closure. The 
difference would probably have been small, since the denominators of (3.16) and 
(3.17) are dominated by the high-wavenumber contributions, which will be nearly of 
inertial-range form. 

Figure 6 shows the effect of the spectrum (3.36) and (3.37) with s = 1 on the sharp 
filter. The non-dimensional net eddy viscosity 

V: = v,/Ko D-’dKi) (3.38) 

is plotted as a function of A, = k / K ,  for various values of Kl /Kp .  When this ratio 
is large the spectrum is virtually of inertial-range form, and when it is O( 1) the peak 
of the production spectrum will be near the centre of the grid-scale range. 

(kpea,JK1 = 0.5 when K l / K D  = 1.651.) 

As the peak of the production spectrum moves away from k = 0 and towards the cut, 
the pronounced cusp a t  k = K ,  is softened and reduced. Indeed v,(K,) can be less 
than v,(O) for small K,/Kp.  For moderate values of this ratio, v, is nearly constant. 

These calculations have been repeated for the Gaussian filter. The effect of the 
production spectrum is again to reduce v, but the change is much less than for the 
sharp filter. 

3.2. Anisotropy of the grid scales 

The results deduced above are ostensibly limited to (homogeneous) isotropic flows. 
This is very restrictive, and seems to make their relevance to large eddy simulations 
very doubtful. We shall now show that (with one fairly plausible assumption) the 
results are in fact independent of the symmetry of the grid scales, provided only that 
the subgrid scales are isotropic. This is much less restrictive, since as eddies become 
smaller they become increasingly isotropic. 

We consider the drain term first. This may be written 

1 

--m 
&,(drain; k) = 2 1  dt”&,,(k, t - t ” )  

x //6(k - p - r) d3pd3rP, jm(k) Gyp) (p, t - t ” )  Pa,,(*) Qmb(r, t - t”) (3.39) 

[Leslie 1973, equation (4.35): we are working on the main time diagonal t’ = t ,  and 
the first two terms on the right-hand side are identical]. k is a grid-scale wavenumber, 
while p and r are in the subgrid range. The functions GFp)(p, t - t ” )  and Qmb(r, t - t “ )  
will therefore be isotropic. If the time dependences are exponential, the explicit 
forms are 

(3.40) 

[cf. (3.13)]. The grid-scale energy &,,(k,t-t”) is not assumed to be isotropic, and will 
not have this symmetry. However, we shall assume that it has the same form of time 
dependence, namely 

&nc(k, t - t”) = qnc(k) exp { - q(k) It - t’’l}. (3.41) 

I Gp)(p, t - t ” )  = P,,(p) exp { - ~ ( p )  ( t  - t”)}, t > t”, 

Qmb(r,t-t“) = Pmb(r )dr )exp{-~(r )  I t - t ” ] }  
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Equation (3.39) gives the whole of the inertial drain from wavenumber k.  This can 
be divided into a grid-scale drain (which will be represented explicitly), Leonard and 
true subgrid terms. With the assumption (3.41) the true subgrid drain is 

- 2C!?(k) qcn(k), (3.42) 

where qcn(k) is the grid-scale energy, and 

Sfk-p-r)d3pd3r(l -G(p)G(r)) 

x P,im(k) %(P) P,,c(P) %(r) q(k) + a(r)  ( p )  + r ( r )  (3.43) 

[cf. (3.10): the factor G2(k) has been absorbed into 91. 
It is shown in the appendix that with the above assumptions 

Cl%) = P , C W  V d ( W  (3.44) 

(3.45) 

[vd(k) being defined by (3.16)] and that it then follows that 

(true subgrid drain)in = - 2vd(k)  q,,(k) 

for any symmetry of q,,(k). 
The work of Herring (1974) shows that the assumption (3.41), on which this result 

appears to depend, is not particularly good. The time dependence of the anisotropic 
part of qcn is rather different from that of the isotropic part, implying that the eddy 
viscosities for the two parts will differ. However the factor q(k) in the denominator of 
(3.43), which specifies the time dependence of the grid scales, will be swamped by the 
subgrid time dependences q(p) and r ( r ) .  The implication is that the anisotropic and 
isotropic eddy viscosities will not differ much and that (3.45) is after all a good 
approximation. 

I n  exactly the same way and a t  the same level of approximation, it may be shown 
that 

(true subgrid backscatter)in = U ( k )  Gr2*)(k, 0 ) ,  (3.46) 

U ( k )  being defined by (3.17), while Gt.',e")(k, 0) specifies the symmetry of the response 
function at  zero time separation. If we assume 

G'i',e")(k, 0 )  = qin(k)/q(k), (3.47) 

which implies that the response function has the same symmetry as the correlation 
function, then the total drain and the backscatter may be rolled into a single net 
drain eddy viscosity according to (3.19) even when the flow is not isotropic. 

However the work of Herring (1974; see also Schumann & Herring 1976) does not 
support (3.47) and this deduction from it. He finds that the response function is less 
anisotropic than the correlation function, and that the time dependence of the ani- 
sotropic part is of the form t exp [ - ~ ( k )  t ]  rather than exp [ - q(k) t ] :  this reduces the 
anisotropic backscatter by a further factor 

,W/rw + V(P) + r(r)l. 
It might, therefore, be better to represent the backscatter as isotropic even when the 
grid-scale correlation tensor is not, There is, of course, no way of doing this while the 
subgrid effects are all rolled into a single net eddy viscosity. 
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We have not investigated the Leonard stress, but similar results can no doubt be 
proved for this term. 

3.3. Anisotropy of the subgrid scales 

Since the cut between the grid and subgrid scales will of necessity be a t  a compara- 
tively low wavenumber, the subgrid scales may well be appreciably anisotropic. 
We have briefly examined the effect of an anisotropic subgrid component of the form 
generated by the action of a uniform velocity gradient on an isotropic field (Crow 
1967, 1968; Leslie 1973, 5 15.3) .  The results seem to be compatible with the treatment 
of this effect recommended by Schumann (1973) ,  but the work is very heavy and has 
not been carried through to completion. 

4. The magnitude of the eddy viscosity 
The results of the previous section show that the error involved in treating the net 

eddy viscosity as constant is by no means unacceptable, if the filter is graded and/or 
the grid-scale spectrum is of production type. Once this approximation has been made, 
it remains only to determine the multiplying constant F of (2 .12)  by demanding that 
energy should be conserved. The calculation has been given above for a sharp filter 
and an inertial-range spectrum, and it will now be extended. 

Energy balance requires som 2k2v,(aw) B(k)  dk = 8 (4 .1 )  

and if the spectrum is of inertial-range type then 

B ( k )  = hb&k-*G2(kh).  

The dependence on the mesh spacing h is now shown explicitly, and the three filters 
all have width 2.957/h, which is the width of a top-hat filter on a mesh of spacing h 
(see 5 2 .2 ) .  It then follows that the constant F in (2 .12)  is given by 

F = 1/ (2KOP,) ,  (4 .2 )  

where (4.3) 

Values of p3 and F (with KO = 1.5) are given in table 1 below. Equation (3 .13)  is a 
special case of this result. 

As noted in 5 2,  it is not easy to compute e in a large eddy simulation and Smagorinsky 
(1963) ,  whose lead has been followed by most later workers, represented v, by (2.13) 
rather than by (2 .12 ) .  With this change v, is now a fluctuating quantity and the 
energy balance equation (4.1) must be modified to 

e = 2~2h2$ k 2 ( B i i m G m )  ( k )  d3k. (4 .4 )  

It would be hard to evaluate the realization average (@GG) properly, and Lilly 
(1966)  therefore approximated it by 

(miii) z ((S))*(Uu) (4.5) 

since k2E(k) dk = 2 K o  dh-4/3, (4.6) 
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Filters 
r > 
Top-hat Gaussian Sharp 

P s  3.373 3.375 3.183 
F 0.0988 0.0988 0.105 
C 0.176 0.176 0.184 

TABLE 1. Eddy-viscosity constants for three filters. 

I 

hK,> 
FIGURE 7. c(hK,) for the A ,  production spectrum. -, top-hat filter; 

_._ , Gaussian filter. 

is easily calculated. Substituting from (4.5) and (4.6) into (4.4), one derives Lilly’s 
result 

c = (2K0/3,)-4 = Fa, (4.7) 

which is limited to an inertial-range spectrum. The approximation (4.5) introduces 
an error whose magnitude is very hard to assess, and this matter is discussed below. 

Values of p3, F and c for the top-hat, Ga.ussian and sharp filters are given in table 1. 
The constants for the top-hat and Gaussian filters are almost identical, and those for 
the sharp filter are not very different. This suggests that i t  is reasonable to regard 
filters of different shapes as equivalent if they have the same width. 

Lilly has also calculated c for the top-hat filter, and found c = 0.185 with KO = 1.41. 
Since c is proportional to KO-2, a change to the KO value of 1.5 used throughout this 
paper would reduce Lilly’s computed value of c to 

1.41 2 
0 . 1 8 5 ~  (-) = 0.1766 

1.50 

in precise agreement with the value quoted in table 1 above. This is satisfactory, 
since it has not proved possible to relate Lilly’s calculation in configuration space to 
the value deduced from (4.7). The relation of this result to the c values needed to 
stabilize actual large eddy simulations is considered later in this section. 
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Filter CT 

Sharp 1.370 
Top-hat 0.489 
Gaussian 0.340 

TABLE 2. Values of the backscatter parameter CT. 

The results in table 1 are valid when the grid-scale spectrum is of inertial-range 
form only, and (as noted in $3.1.3)  this will not be so in a ‘ real-life ’ large eddy simu- 
lation. We have therefore computed the dependence of c on hKp for the Gaussian and 
top-hat filters, and the results are shown on figure 7 . t  

As a specific example of this work, the maximum of the A ,  spectrum is a t  

k / K ,  = (3/5)9 = 0.826 

while the widths of all the filters are normalized to W = 2-957h-l. Thus for hKP = 1.790 
the peak of the production spectrum is a t  4 W, which is about where we should expect 
to find it in a well-conducted large eddy simulation. For this value of hK, and the 
top-hat filter, c = 0.155. For the same filter with a purely inertial-range spectrum, 
c = 0.176 (see table i ) ,  so that the change to a production-type spectrum does not 
have much effect on the value of the Lilly constant. 

4.1. Corrections to the global approach 

The global values of the net eddy viscosity v, quoted above have been computed by 
equating the net ‘eddy-viscous’ drain to the energy generation in the grid scales. 
(With a production-type spectrum, some of the generation will be in the subgrid 
scales.) The net drain is the difference between the gross outflow and the backscatter, 
and it turns out that the backscatter is larger than might have been guessed. 

Its importance is conveniently measured by the parameter u, defined by 

gross drain = (1 + a) eT, backscatter = C T E ~ ,  (4.8) 

eT (which may be less than E )  being the net drain. Values of u for all three filters with 
an inertial-range spectrum are given in table 2. The value for the sharp filter is par- 
ticularly striking, since it implies that the backscatter is greater than the net drain. 
If the inertial-range spectrum is replaced by the A ,  production-type spectrum, u for 
the sharp filter decreases as hK, is increased, passing through a minimum of 0.45 
for hKP z 3-3. With the Gaussian fiIter and the A ,  spectrum, IT is virtually indepen- 
dent of hKP if this parameter is less than 1.5; thereafter it rises slowly. 

These large values of u do not invalidate the c values quoted above provided that 
the flow is strictly homogeneous. They are a warning that inhomogeneity could easily 
produce an imbalance between the gross drain and the backscatter. 

There is another effect which does produce a correction even in a homogeneous flow: 
this is the Leonard stress. As already noted, Lilly’s formula (4.7) is derived by equating 
the eddy-viscous drain to the total generation. Modern practice is to use Lilly’s 

t The calculation is straightforward but tedious. The details have been suppressed to save 
space: they are available from the authors on request. 
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representation (2.13) for the true subgrid drain only: this is less than the total drain 
because of removal by the Leonard stress. 

We have already noted that, for a Gaussian filter with an inertial-range spectrum, 
the Leonard stress removes 14.2% of the energy. The effect of this is to reduce c from 
0.176 to 0.163. 

4.2. Evidence from numerical experiments 

At present it is customary to use the same c value over the whole of the flow field, 
and to adjust this single value empirically to produce agreement with the known 
time behaviour of the total energy. If the flow is stationary the criterion is simply 
that  the energy should be constant. However a stationary flow must have real 
production terms, and these are essentially inhomogeneous. Deardorff ( 1970) and 
Schumann (1973, 1975) have studied fully developed channel flow, and they both 
find that a c value around 0.09 stabilizes the flow. 

Closer examination shows that this apparent agreement is spurious. Deardorff uses 
a Smagorinsky-type subgrid model, and his c value is strictly comparable with that 
studied by Lilly and ourselves: his work does indeed imply that the theoretical values 
of c are too high by a factor of about two. Schumann’s model is quite different: it is 

v, = C,h(,G’)+, (4.9) 

where E’ is the subgrid energy [see (2.1)]. Schumann shows that for a sharp filter 

c2 = (hK,)-l (#KO)-+ = 0.100 (4.10) 

for KO = 1.5 and hK1 = 2.957 [see (2.22)]. (He puts hK, = n and quotes a slightly 
different value of c2.) For the same case 

c = (hK1)-1($Ko)-2 = 0.184 (4.11) 

(see table l) ,  so that Deardorff’s constant c should be nearly twice as large as Schu- 
mann’s constant c2. 

Schumann finds that the theoretical value of c2 is not grossly wrong, and the in- 
compatibility between this and Deardorff’s finding cannot be resolved with the 
available information.? 

Since it contains no production a homogeneous flow must decay and c must be 
adjusted so that the simulation reproduces an experimental decay rate. Grid 
turbulence is generally reckoned to be nearly homogeneous in the centre of the wind 
tunnel, the time decay being mimicked by the mean-flow convection of the turbulence 
away from the grid. Kwak et al. (1975) have made a homogeneous large eddy simula- 
tion of the grid-turbulence measurements of Comte-Bellot & Corrsin (1971). They 
find that with a c-value of 0.206 the calculation matches the experimental energy 
decay rate. This is quite close to Lilly’s value (0-185).$ The agreement seems to be 
fortuitous because of the following: 

(i) The unknown error in Lilly’s approximation (4.5). 
(ii) The effect of Leonard stresses, which were ignored by Lilly but were included 

(iii) The inhomogeneity of the actual flow. 

t Deardorff (1971) suggests that the disagreement may be due to the effect of shear, which 

1 Kwak et al. say that their value agrees with Lilly’s: this seems to be wrong. 

in the Kwak et al. simulation and which, as noted above, will reduce the value of c. 

is not included in Lilly’s analysis. 
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(iv) The error in the standard subgrid model of the long waves (see footnote in 

Clearly there is a good deal more to be done, even in this simplest example of the 
$ 3.1.3) : these will eventually dominate the decay. 

use of subgrid modelling. 

5. Implications for large eddy simulation 
Implicit in $ 4 . 2  is the assumption that v, values deduced for a closed calculation 

can be applied without change to a large eddy simulation. We shall now discuss the 
validity of this application. We do not consider the effect of the unknown errors in 
the classical closures. 

5.1. T h e  validity of unaveraging 

When the results of a closed calculation are used in this way one is effectively ‘un- 
averaging’ the grid scales while leaving the subgrid scales averaged. It is natural to 
ask whether this can be valid, and whether the simulation will not be affected by 
quantities with zero mean which were destroyed by the averaging process and which 
are not recreated by the crude unaveraging used above. One could have more con- 
fidence in the process if the grid and subgrid scales were well separated, but they are 
not. They are adjacent if the filter is sharp, and they actually overlap if it is graded. 

The simple answer is that  the difficulty lies as much in the crudeness of the subgrid 
model as in the unaveraging process. With Smagorinsky’s simple model (2.13) we 
can demand no more than that the mean energy should be conserved a t  each point. 
Apart from any defects in the classical closures and the technical errors listed in 
$ 4 . 2  (the latter being remediable, a t  least in principle) the method of this paper does 
just this, and no more can be accommodated within the standard framework. 

Since so much has been thrown away, any individual realization of the large eddy 
simulation must be in error. However, averages deduced from it should be much less 
wrong, and i t  is usually t,hese averages which are wanted. Large eddy simulation is 
normally used, not because i t  can furnish information on fluctuating quantities, but 
because it is an effective way of computing averages. 

Rose (1977) has applied renormalization group methods to subgrid modelling and 
in this way has been able to  avoid averaging the grid scales. He shows that there 
is a hierarchy of effects, of which the first three are gross drain, which is of eddy- 
viscosity form, backscatter and eddy-mediated advection. The first two transfer 
energy in the mean, the higher terms do not. 

At present not even the backscatter is represented explicitly: i t  is merely allowed 
to modify the eddy viscosity. The first forward step is obviously to include the back- 
scatter, and we have shown that the necessary information can be obtained from the 
classical closures. We have also shown that the backscatter is large, and that it is 
likely to  be more isotropic than the gross drain or outflow. It therefore seems well 
worthwhile to test the effect of representing it explicitly. 

The effect of unaveraging the Lilly approximation (4.5) is to replace Smagorinsky’s 
subgrid model (2.13) by 

The realization average can be implemented either as an average over a volume 
surrounding the point in question, or as an integral over past time. Love (1977, 

ye = C2h2(R)*. (5.1) 
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private communication) has tested this modification on Burgers’ equation (using 
volume averaging) and has found that it improves the modelling. It would be in- 
teresting to  try it on the Navier-Stokes equation. 

5 .2 .  The eSfect of jinite subgrid time scale 

I n  $3.1 we limited ourselves to the main time diagonal t = t ‘ , and we integrated 
out the time dependence of the inertial transfer term with the help of the assumption 
(3.13). According to Kraichnan’s original (or Eulerian) direct-interaction approxi- 
mation, the forward scatter or drain part of this term has the detailed time structure 

$/dt”G(res)(p, t -  t” )  Q(r, t - t ” )  Q(k, t”- t ’ ) .  

This can be generated by adding to the primitive or unaveraged Navier-Stokes 
equations a drain term 

J -a 
A 

where c ( k , t - t ” )  = xG(res)(p, t - t ” ) Q ( r , t - t ” ) .  (5.3) 
If we assume that the subgrid fluctuations are much faster than those of the grid 

scales, then 
t 

( 5 . 2 )  --f v,k% with vdk2 = 1 c (k , t - t” )d t”  
- W  

(5.4) 

The representation (5.2) is presumably more faithful than (5.4), in that it should 
enable the large eddy simulation to follow the detailed fluctuations. 

The effect of this can be tested relatively easily, once the net drain has been 
separated into gross drain and backscatter, though the structure of 5 may lead to 
storage problems. 

5.3.  The effect of inhomogeneity 

I n  this application, their inability to say anything practically useful about the effects 
of inhomogeneity is the Achilles heel of the classical closures. (Their inability to 
represent intermittency is much more fundamental, but its practical consequences 
may well be much smaller.) 

The results deduced above can be valid only if the subgrid scales and the smallest 
grid scales are nearly homogeneous. It seems likely that, if this condition is satisfied, 
the inhomogeneity of the largest scales (which is inevitable in any simulation of a 
real flow) will not invalidate the results; however this still remains to be proved. 

It is possible to make scales of the order of the grid spacing reasonably homogeneous 
except near boundaries, though this condition is often violated to save machine time. 
Thus the results of this paper should be applicable away from the boundaries, pro- 
vided enough mesh points are used. In  particular it would, in our opinion, be valid 
to allow Smagorinsky’s constant c to vary across the flow field as a function of hKp 
(see $3.1.3 and figure 6), and a method has been worked out for determining this 
quantity in a practical calcu1ation.t However c does not depend strongly on hK,, 
and the difference between representing this variation and using a constant value of 
c would probably be rather small. 

t Details are available from the authors on request. 
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The theory presented above is invalid in the grid volumes adjoining boundaries, 
because of strong inhomogeneity and the absence of an inertial range in the inner parts 
of these regions. The boundary conditions used in existing simulations are heuristic 
(e.g. Schumann 1973, 1975) and this is probably the weakest part of the theory of 
large eddy simulation. 

6. Conclusions and recommendations 
(i) We have confirmed Kraichnan’s (1976) result that effective eddy viscosities 

can be deduced from the classical closures. Kraichnan found that the effective eddy 
viscosity varies strongly with k, but this result is now seen to be peculiar to the com- 
bination of an inertial-range grid-scale spectrum with a sharp filter. With more realistic 
spectra and filters, it  is reasonably constant. 

(ii) Smagorinsky (1963) estimated 8 from the grid-scale strain function $4. The 
classical closures suggest that this estimator should be replaced by ($)* or by a volume 
average. This works well for Burgers’ equation, and should be tried for the Navier- 
Stokes equations. 

(iii) The results are deduced for an isotropic flow. It has been demonstrated that 
they are valid whatever the symmetry of the grid scales, provided only that the sub- 
grid scales are isotropic. It has been confirmed that there is no special difficulty in 
extending the work to anisotropic subgrid scales. 

(iv) The analysis has revealed a number of weaknesses in the conventional subgrid 
model, even when the flow is isotropic. In particular, the recent paper of Lesieur & 
Schertzer (1977) suggests that the model is seriously in error for the long waves. Our 
work also suggests that it would be advantageous to model the gross drain and the 
backscatter separately, and that the finite subgrid time scale could then be allowed for 
explicitly by way of a time-dependent eddy viscosity. 

(v) We have separated the Leonard term from the ‘true’ subgrid stress, and find 
that in a typical case this term accounts for 14% of the total drain. Leonard’s ap- 
proximate representation overestimates the Leonard drain, but the consequent 
error in the subgrid drain amounts to a few per cent only. 

(vi) The results are formally valid for homogeneous flows only, and there is at 
present no way of extending them to real, inhomogeneous flows. Though we have no 
proof we think it likely that they are valid for the interior regions of such flows, pro- 
vided that eddies comparable in size with the mesh spacing are reasonably homo- 
geneous. The flow in mesh volumes adjoining boundaries is necessarily inhomogeneous, 
and the boundary conditions should correct empirically any deficiency in the subgrid 
model in these regions. 

We are grateful to Dr J. R. Herring, Dr R. H. Kraichnan and Dr H. A. Rose for help- 
ful discussions and correspondence and to Dr Kraichnan for comments which have 
helped us to improve the presentation. Turbulence research in the Department of 
Nuclear Engineering a t  Queen Mary College is supported by the Science Research 
Council, and Dr G. L. Quarini is indebted to the Council for a (predoctoral) Research 
S tudentship. 
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FIGURE 8. Illustration of the operation d3pd3r.  /IA 
Appendix. Evaluation of the generalized eddy viscosity 

This quantity is defined by (3.43). The integral operator 

= ![d(k-p-r)d3pd3r 

is equivalent to 

(Leslie 1973). As indicated in figure 8, the integration over the angular variable h is 
carried out by rotating the p and r vectors round k while the shape and size of the 
triangle k, p, r is held fixed. If the integrand is a function of the scalars k, p and r only, 
then this operation simply multiplies that integrand by 27r. If however the integrand 
depends on the vectors k, p and r, then the effect of the rot'ation is to remove the 
dependence on the angle variables R, and R,: the integral may still depend on the 
vector k, but it will be a function of the scalars p and r only. The integration over 
these variables is then limited to the region 

in which p and r can form a triangle with k.  
Equation (3.43) of the main text may therefore be rewritten 
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where C,,(k? P ,  r )  = $ dhBi,(k, P ,  r) (A 4) 

and Bic(k, P ,  r) = f ' i jm(k)  P j b c ( ~ )  Kb(r) (A 5 )  

since Pj,(p) P,,,(p) = Pjbc(p). Now B,,(k, p ,  r )  is a function of the scalars k ,  p and r 
equal to 

where 

is the quantity which first appears in (3.14). 

parts [his equation (A IS)]. We make the same division of Bic: 

J3@, P ,  r )  = 2k2b(k, P ,  r ) ,  

w, P,  r )  = ( P P )  (xy + z3)  

(A 6) 

(A 7) 

To prove (A 6) and (A 7) Leslie (1973, appendix) divides J3 = B,,(k,p, r )  into four 

and the definition of the other three terms will be obvious by comparison with Leslie's 
equation (A 17) .  

The contribution of this term to Cic is 

@ ( k , p ,  T )  = k p ( z + x y ) $ P , j ( k ) P j , ( p ) d h .  (A 10) 

To evaluate the inner integral we use a Cartesian co-ordinate system with the 1 
direction parallel to k .  In  this system 

P,j(k) = 82iS2j+83i83j (A 11)  

and 

Referring to figure 8, the components of p are 

is the component perpendicular to k.  After integration only the terms c = 2,3  survive 
in p2p,/p2 and p3pc/p2  respectively. Thus 

dhP,j(k) Pic@) = ZT (6,i 8, + b3i 6,) 1 - - - 

(A 15) 
( $) 

= T (  1 + 2,) ec(k), 

= TP,,(k) B,W, P, r ) ,  

I 
so that C$)(k ,p ,  r )  = TP,#) kp( 1 + 2,) (2  + xy) 

B, being the quantity defined by Leslie [1973, equation (A 18)]. 
With rather more labour it may be shown that the same result holds for the other 
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Substituting from (A 16), (A 6)  and (A 7) into (A 3), we confirm equation (3.44) of 
the main text [cf. (3.16)]. Now 

qcn(k) = <cc(k, t )  Gn( - k, t ) )  

and since uc satisfies the continuity condition kciic(k) = 0, qcn must be of the form 

qcn(k) = %(k) Be#) pfn(k), 

where (ier may have any symmetry. Since Pic(k)Pce(k) = &(k) equation (3.45) of the 
main text follows at once. 

If we assume 

then the result 
G@)(k, 7) = Gp;8)(k, 0) exp [ - ~ ( k )  .TI 

(true subgrid backscatter)i, = U ( k )  P,,(k) GFz8)(k, 0) 

(A 17)  

(A 18) 

may be derived by the methods used above: the evaluation of further factors similar 
to Cic [see (A 4)] can be avoided by using a relation analogous to equation (A 28) of 
Leslie (1973). Equation (3.46) of the main text now follows from (A 18) by con- 
tinuity. 
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